
Journal of Statistical Physics, Vol. 38, Nos. 5/6, 1985 

A Dynamical Phase Transition in an 
Infinite Particle System 
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The local equilibrium picture of the time evolution of a gas may have to be 
modified in the presence of shocks in order to admit statistical mixtures of pure 
states in the hydrodynamic description. An example drawn from a stochastic 
many-particle model (asymmetric zero-range model) is described. 
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1. INTRODUCTION 

Implicit in the hydrodynamic picture of the time evolution of a gas or fluid 
is the assumption of local equilibrium. On a microscopic (space and time) 
scale the fluid is in equilibrium; on a macroscopic scale, the equilibrium 
parameters evolve according to hydrodynamic equations. Thus a scaling 
limit--the limit of vanishing gradients--is implicit in this description from 
the outset. The overall picture should be valid for a suitable class of "local 
equilibrium" states which can then be said to exhibit "hydrodynamic 
behavior." 

A rigorous proof of the validity of this picture for any realistic model 
of a fluid may be beyond our capabilities at present. But as a recent survey 
makes clear, (1) for some simplified models--"caricatures" of a real gas--the 
local equilibrium picture can indeed be justified. These include models with 
Newtonian dynamics (ideal gas, hard rods in one dimension) and models 
with stochastic dynamics (simple exclusion process, zero-range process,...). 
Experience with these models lead the authors in Ref. 1 to propose a 
hierarchy of ergodic properties which a system may possess, driving it to 
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local equilibrium; thus, local mixing, local ergodicity, etc. This paper con- 
cerns a particular clear example, intended to elucidate the distinctions 
between these definitions, and to relate the breakdown of local ergodicity 
to the formation of a shock wave. Before discussing the model we review 
the relevant material from Ref. 1. For simplicity we omit some of the 
technical assumptions. 

Let our infinite particle system have a family d o of translation-in- 
variant, extremal equilibrium measures, labeled by the values of a single 
(locally conserved) quantity, e.g., the particle density p. (Of course, the 
equilibrium states of a Newtonian fluid are labeled by the values of the five 
locally conserved fields, namely, the mass, energy, and the three com- 
ponents of the momentum density,) We write g =  {Vp}o~p<~. Let T* 
denote time evolution of states (probability measures on phase space) 
under the dynamics, and let d be a bounded metric for the weak topology 
on states. A state # is called locally mixing if 

lim sup d(DxT*#, ~) = 0  (1.1) 
t ~ o o  x 

where Dx is spatial translation by x. # is called weakly locally ergodic if for 
every 6 > 0 there is a time T~, T~ ~ oo as 6 ~ 0, and t~ < oo such that 

s u p s u p P  ~ t / : d \  ds6,, ,$ > 6  < 8  (1.2) 
t~> t 6 x 

In (1.2) t/t stands for the configuration of the system at time t, and 6, for 
the point mass at t/. P" is the path measure, with initial measure #. Finally, 
# is called locally ergodic if for every 6 > 0 

/ 1 rt+r~ \ 
sup sup d [D~-~- | ds T * # , g )  < 6  (1.3) 
t >~t6 x \ 1 6 ~ t  

These three definitions represent increasingly strong forms of local 
ergodicity. It is the distinction between weak local ergodicity and local 
ergodicity (or mixing) which we shall illustrate in this paper; from the 
definitions, it is clear that the difference lies in the dependence of the local 
equilibrium parameters on the path of the process. That local mixing 
implies local ergodicity implies weak local ergodicity follows from Birkoff's 
theorem and a compactness argument; see Ref. 1. 

If a state is locally mixing or ergodic, an "equilibrium profile" p(x, t) is 
at least approximately defined for large t. To obtain sharper results--per- 
mitting one to investigate the hydrodynamic equation of the system--one 
must assume that there is a fixed "hydrodynamic scaling" for the system, 
and select a suitable family of states defining an equilibrium profile at time 
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zero. Let /~, e > 0 be a family of states such that there exists a function 
p(~, 0) with 

lira d(Dx# ~, vo(~,o~ ) = 0 (1.4) 
e ~ 0  
~ x ~  

for all 4, and let t(e, ~) be a function increasing in r and decreasing in e. 
Following Ref. 1 we call {/~' }~ > o a local equilibrium distribution if there is a 
function p(~, t) such that 

lim d(DxT,*~,~3# ~, vp~r = 0 (1.5) 
e--tO 

One expects to find a local equilibrium distribution with any given initial 
profile if a large class of locally ergodic (or mixing) states exists. 

The model we discuss is called the asymmetric zero-range process 
(AZRP), and is one of a class of models introduced by Spitzer in Ref. 2. In 
a tour de force of coupling arguments, the existence of local equilibrium 
distributions whose equilibrium profile p(r satisfied a differential 
equation--the hydrodynamic equation of the system--was proven by And- 
jel and Kipnis in Ref. 3. (See also Section4 of the present paper.) The 
hydrodynamic equation turns out to have the form of a (nonlinear) "dif- 
ferential conservation law," in the terminology of Ref. 4, and consequently 
admits shock wave solutions. We shall show that these solutions are 
associated--microscopically, in our model--with the breakdown of local 
ergodicity. 

2. THE A S Y M M E T R I C  Z E R O - R A N G E  PROCESS 

This is a Markov process with state space X-= (Z + )z. t/e X represents 
a configuration of particles located at sites x e T/; t/(x) is the occupation 
number at site x. The dynamics is given by the following rule. At each site 
there is a clock which rings after a waiting time with an exponential dis- 
tribution (Poisson process); when a clock rings, if that site is occupied one 
particle jumps to the next site on the right. The clocks are independent of 
each other and of the occupation variables. Since the rate of jumping of 
each particle depends only on the occupation variable of the site it 
occupies, the interaction is said to be zero range; since particles jump only 
to the right, the process is said to be asymmetric; hence the name. 

Usually one does not construct the variables directly as described; 
instead, one writes down an infinitesimal generator and constructs the 
process using the Hille-Yoshida theorem or by proving existence and uni- 
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queness of the martingale problem (see Ref. 5 and references therein). For 
our process the generator L acting on cylinder functions f is given by 

[Lf](q)= ~ l[.(x)>o](f(tlx'x+X)-f(q)) 
x~2Z 

In (2.1) 1A is the characteristic function of the event A and 

(2.1) 

q(x) - 1, y = x 
qx,x+X(y)= q(X+ 1)+ 1, y = x +  1 (2.2) 

tl(y), y C x, x + l  

The Markov process associated to L is then determined (formally) by the 
formula 

E"f(qt) = [eLgC-](q) (2.3) 

where ~/, is the configuration of the process at time t and E" is expectation 
with respect to the process with initial configuration tt. 

Some additional notation: ~ will denote the path space of functions: 
t ~ t/r which are right continuous with left limits (X is given the 
product topology). Given a probability measure # on X, P" will denote the 
corresponding path measure with/~ as initial state. If A c 7/, 0 < ]A[ < ~ ,  
q(A) denotes the function: 17 ~ I - I ~ a  t/(x). 

Let {Vp}o<_o<oo be the family of translation-invariant, extremal, 
equilibrium states of the AZRP, (6) indexed by mean density: vpOl(x))=p 
[vp is a product measure for which q(x) has a geometric distribution]. 
Given a function P0: R -~ R + define #~, e > 0, to be the geometric product 
measure with 

#"[q(x) = k] = Vpo(,x)[rl(x ) = k] (2.4) 

In Ref. 3 it is proven that {#~}~> o defines a local equilibrium distribution 
with t(e, ~ ) = a - l r  and equilibrium profile p(~, t), the solution of the dif- 
ferential equation 

~?p/Ot = - (1  + p)-2 c?p/~?~ (2.5a) 

with initial condition 

p(~, 0) = Po(~) (2.5b) 

(2.5a,b) were established for two classes of initial profiles: (i) Po smooth 
and decreasing; (ii) Po increasing and piecewise constant. [In the latter case 
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(2.5a,b) were shown to hold in the weak sense, and (1.5) to hold at points 
where p(., t) is continuous.] A particularly simple case in class (ii) is 

~Po, ~ > 0 (2.6) 
po(~) = t0 ,  r < 0 

In this case the differential equation predicts that p(', t) is given by 

p( r t) = Po( ~ - V(po)t) (2.7a) 

with V(po) given by 

D(pO) : (1 "I'- t00)--1 ( 2 . 7 b )  

This case might be considered to model the propagation of a shock wave. 
In Ref. 3 it was conjectured that the state at the shock might not be an 

extremal equilibrium state. We prove in the next section that the state at 
the shock is in fact a mixture of form: 2(x, t) Vo + [1 -2 (x ,  t)] vp0. We find 
the equation satisfied by 2(x, t). In the terminology of Ref. 1, the product 
measure with equilibrium profile given in (2.6) is weakly locally ergodic but 
not locally ergodic. In the final section we discuss the general case with 
shocks. 

3. THEOREM 

Theorem 1. Let # be the geometric product measure with 

~l-~(x) = k ]  = ~V~o[,7(x)=k], x>~O (3.1) 
~Vo[rl(x)=k], x < 0  

Given 6 > 0 there exists T~ < oo such that 

lim sup P~ d Dx--+-- dsc~,~s, Vpo >6 - ( 1 - 2 ( x ,  t)) 
t~oo  x ~t 

+ PU[d(Dx-~ft'+r~ds6ns, V o ) > f ] - 2 ( x , t  ) } = 0  (3.2) 

2(4, t) is the solution of the equation 

a2/at = -V(po) a2/a~ + [D(po)/2] a~/aU ;~ (3.3a) 

with initial condition 

1, ( < 0 (3.3b) 
~(~, 0) = 0, ~ i> 0 
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and 

Coro l la ry .  

v(po) = D(po) = (1 + P0)- '  (3.3c) 

For any function T~, T~---, ~ as e ~ 0, and any t > 0, 

lim 1 ( t~-t + r, ds T* D v(po )t~- i 
e~o Te Jr8 -1 

+ 

= [ 1 -  ;~(~, t)3 V,o + ;~(~, t)Vo 

2(~, t) satisfies the equation 

O2/#t = [D(po)/2 ] ~32/~3~22 

with initial condition 

(3.4) 

(3.5a) 

1, 3 < 0  (3.5b) 
,~(~, 0) = 0, ~ >/0 

Remarks .  (1) The corollary follows by averaging over the paths of 
the process and making use of the equality 

2(~- lv(po) t  + e-1/2~, ~-~t) = 2(3, t) (3.6) 

(2) We can require T~ to tend to infinity as slowly as we please; in 
particular, taking eT~ ~ 0 we can consider the time averaging in (3.4) to be 
over a "microscopic" time interval. 

(3) The interpretation of the corollary to theorem one is the 
following. Viewed on a scale of order ~-~/2, intermediate between the 
microscopic scale (unit length = lattice spacing) and the macroscopic scale 
(unit length = ~- ~), the system is in a statistical mixture of pure states with 
parameter varying smoothly (on this scale) from zero to one. 

Proof  o f  Theorem f. We will prove the following: For every A c ;7, 
0 <  IAI < ~ and 6 > 0 ,  there exists T~< ~ such that 

tlim sup U'  ~ ds rls(A + x)  - vpo(rl(A > 6 

- - [ 1 - ~ , ( x , t ) ]  + P"[_--~3t d s r l s ( A + x ) < O  

- L(x, t) ~ = 0 (3.7) 
) 

(3.2) follows easily from (3.7). 
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To begin, consider the motion of a test particle added to the AZRP at 
x - - 0  at time t = 0. To simplify the discussion assume that there are no par- 
ticles to the left of zero. Let zt be the location of the test particle at time t. 
We assume that (qo(x))x>~o is in equilibrium with mean density Po at time 
zero. The process (zt, ~/,) is then defined by the following: 

(i) t/t, t >~ 0, is an AZRP. 

(ii) Conditional on ~/t(zt)=0, z, performs an asymmetric random 
walk to the right at speed one. 

Then we have the following (perhaps surprising) fact: 

Proposition 1. Let Tx be the time spent by the test particle at site 
x~>0: T~=[{t:zt=x}r. Then the Tx, x>>.O, are independent and iden- 
tically distributed with an exponential distribution of mean (1 + Po). 

Corollary. ~l/2(zt/~-v(po)t/~] --+ D(Po) ]/2 Bt weakly, where Bt, 
t 1> 0, is Brownian motion starting at 0, and D(po)= v(po)= (1 + P0)-1. 

Proposition 1 follows from a well-known theorem in the statistical 
theory of queues, originally due to Reich. (v) This theorem states that in a 
sequence of simple queues in tandem, at equilibrium, the waiting times of a 
"typical customer" in the queues are independent. The interpretation of 
"typical customer" may be taken to be one who arrives at the first queue at 
time zero. This customer finds the queues in equilibrium, so the proposition 
follows from Reich's theorem. 

In Ref. 8 the reader will find a proof of Reich's theorem by a rather 
clever "time reversal" argument. If this is not sufficiently convincing, the 
reader should turn to the Appendix of this paper, in which another proof, 
requiring only a few calculations with the generator, is given. 

Turning to the proof of (3.7), let z~ be the location of the "last" q par- 
ticle, i.e., z~ = inf{z: t/ ,(z)> 0}. Since the distribution of r/o(X0), conditional 
on qo(Xo)>0, is the same as that of rio(X0)+ 1, we may represent the 
process, conditional on Zo = Xo, as (q~, z~) with ~tt in equilibrium and law 
that described before Proposition 1. 

Let 6 > 0 and choose T6 < oe such that 

supPV~176 -, >6]<~ (3.8) 

That T~ exists follows from the translation invariance, stationarity, and 
ergodicity of PV00 and from yon Neumann's L2-ergodic theorem. 

Define, for each L > 0, x ~> 0, t ~> 0, 6 > 0, 

d~  {coegX:z,(cn)~v(po)t+(x+L)t~/2, t<<.s<<.t+ T~} (3.9) 
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Let A c Z, 0 < [AI < oo. On gx+,~ we have, for t sufficiently large, 

1 [t+r~ 
~ J t  dsqs(A+v(p~ (3.10) 

and similarily on g - L  
x , t  , 

-~[t+r'as,sr < 6  (3.11) 
" t  

except for a set of paths of total measure less than 6, by (3.8). (To see this, 
note that we could have added q' particles to the left of zero at time zero 
and coupled the motion so that (i) q + t/' is in equilibrium (Vpo), (ii) q' par- 
ticles never bypass q particles (see Ref. 3). On g L we could replace r/, by x , t  

Finally, we use Proposition 1, the definition of weak convergence, and 
the continuity of the sample paths of Brownian motion to show that 

P~{coef2: x//~ [z~ , -v(po) s e - 1 ] ~ x + L + O ( e )  

1 ~<s~< 1 + O(e)} 

=PU[&~,~] t~--7-~ P[D(po)~/2 B I ~ x  • L] (3.12) 

Substituting V(po)t + xt 1/2 for x in (3.7), using the identity 

2(v(po)t + xt m, t) = P[D(po) m B~ > x]  (3.13) 

and taking the limits: t ~  o% then L--*0 completes the proof of the 
theorem. | 

4. R E M A R K S . - - T H E  GENERAL INCREASING INIT IAL 
E Q U I L I B R I U M  PROFILE 

The methods of Ref. 3 suffice also to treat the case of an arbitrary 
increasing initial equilibrium profile. In this section a theorem to this effect 
is stated and its proof is sketched. 

T h e o r e m  2. Let #~ be given by (2.4) with Po increasing and 
piecewise continuous. Let p(~, t) be the weak solution of (2.5a,b) "with 
entropy condition. ''(4) Then (1.5) holds for all (x, t) at which p(., t) is con- 
tinuous. 

Sketch of Proof. The case of Po piecewise constant was treated in 
Ref. 3. Approximate Po(') above and below by piecewise-constant p~,~ (with 
mesh of size 6). Use the following facts: 
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(i) Let Pi('), i =  1, 2 be increasing with pl(')<~p2('). If pl( ' ,  t) and 
P2(', t) are the weak solutions of (2.5a) with initial conditions p l ( ' )  and 
P2('), respectively, satisfying the entropy condition, (4) then Pl(~, t)~< 
P2(~, t) at all points of continuity of pl(-, t) and P2(', t) and all t > 0 .  

(ii) The solution of (2.5) is stable in L~ norm. 

(iii) Let /q ~<#2 in the F K G  (stochastic) sense. Then T*#~ ~< T*#2 
for all t/> 0 if T* denotes time evolution of measures in the AZRP. 

The proof of (i) is immediate from the geometric solution (see Ref. 4). 
(ii) is proved in Ref. 9. The proof of (iii) is just the existence of the coupling 
used in Ref. 3. 

To complete the proof of Theorem 2 use the fact that p~(- )<  P2(') 
implies the corresponding inequality for states, (i)-(iii), and the results in 
Ref. 3 to conclude that (1.5) holds except for the countable set of points at 
which the approximate solutions of (2.5) have discontinuities. From the 
geometric solution of (2.5) it is clear that this set is, for each time t and 
6 > 0, a continuous function of the set of initial jumps, so that varying this 
set (for each6) we conclude that (1.5) holds everywhere except at the 
jumps of the actual solution [with initial condition Po( ')] .  | 

5. C O N C L U S I O N  

The interest in this result is that an initially continuous (even C ~) 
increasing equilibrium profile may develop a shock at a later time. In fact it 
is easy to construct a continuous Po(') such that Po(', t) is the traveling 
shock solution (2.7) after a time T(shock). It is natural to conjecture that the 
state at the shock--once it forms--is a statistical mixture as described in 
Theorem 1 and its corollary. 

The truth of this conjecture would indeed establish the 
appropriateness of the term "dynamical phase transition" in this context. 
Unfortunately the methods used to prove Theorem 1 do not generalize in 
any straightforward way to even a two-step shock, let alone to the fully 
nonequilibrium situation we encounter when trying to deal with the general 
increasing case. 
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APPENDIX.  A PROOF OF REICH'S THEOREM 

We provide a new proof of a geometrical character, starting directly 
with the generator. The idea of the proof is to keep the "customers" fixed 
and let the "servers" jump past the customers in the reverse direction. If we 
can show that the process formed by servers jumping past a fixed customer 
is Poisson we shall have proved Reich's theorem. 

k e m m a .  Let St = (S , (x ) )x~  z + 1/2 be an AZRP on E + 1/2, jumping 
to the left, in equilibrium with mean density po  1. Let y t ( n ) e  7/+ 1/2 be the 
location of the nth S particle to the right of zero at time t. [That  is, 
y t (n+l )>~y , (n )>~O and S t ( x ) = l { n : y , ( n ) = x } l . ]  Let (~/t, zt) be the 
coupled process described before Proposition 1. Then 

(r/t(zt), t h ( z ,+n ) ) ,>~ l , , ~ ( y t (1 ) -  1/2, y t ( n +  1)-- yt(n)),,>~, (A1) 

i.e., the joint distributions are identical. 

Proof of the Lemma. Let ~t (x )=~h(Z ,+X) .  ~,(x) represents the 
process as seen from the moving frame of the particle. A short calculation 
using (2.1) shows that ~,(x), x ~> 0 is Markovian with generator (let f be a 
cylinder function): 

= l[r + l ) -  f (~ )J  
x>~O 

+ lE~(o)=o][D l f ( ~ ) - f ( ~ ) J  ( A 2 )  

The generator of the process ( y , ( 1 ) -  1/2, y t ( 2 ) -  y,(1),...) is easily seen to 
be equal to L as well. 

Thus to complete the proof of the lemma one only needs to check the 
equality of the distributions at time zero. We have (a = po(1 + po)- l ) :  

P[I/o(X ) = k]  = ek(1 - c~) 

p [ S o ( X  + 1 /2 )  = k ]  = (1 - 

P[yo(1 ) - 1/2 = kl ,  yo(2) - yo(1 ) = k2,..., yo(n) - yo(n - 1 ) -- k , ]  

= [ekl(1 - c0c~ ] [c~k2(1 - cQ] ""  [c~k'-t(1 - c~)] [~k,- '(1 - c0] 
n k"  = ( 1 - -  ~)n ~Zi=l ' 

= P[r/o(O ) = k,,..., t/o(n - 1) -- k , ]  (A3) 

This proves the lemma. | 
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To complete the proof of Reich's theorem note that a jump: z~ --* z~ + 1 
is signaled by a shift in the configuration ~t(x), x~>0 to the left. In the 
realization of ~t in terms of the St process, this shift occurs precisely when a 
server (S particle)jumps past zero. That this process is Poisson (a theorem 
of Burke; see Ref. 8) is established by first showing that a single queue 
(site) in the AZRP, in equilibrium, is simply a reversible, birth-and-death 
process. Hence the "leaving" process is Poisson. 
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